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ABSTRACT

Finite~element formulations of fluid-structure inter-
action problems based on the use of structural analogies
have been used in a wide variety of applications. The
formulations originate from analogies that can be derived
between the equations of dynamic elastic motion and
generalized forms of the scalar wave equation. The
analogies prescribe that the fluid can be modeled with
structural finite elements to which special material
properties have been assigned. A particular advantage of
this approach is the requirement for only a single degree-
of-freedom at each field grid point to represent the scalar
field variable. 1In this report the analog formulations
are extended to steady-state plane wave scattering by
infinite cylinders. Details of implementation of the formu-
lations via the NASTRAN computer program are presented
along with calculations of acoustic pressure scattered by
submerged rigid cylinders, empty elastic cylinders, and
elastic cylinders containing fluids bounded by interior
cylinders which may be eccentric with respect to the
outer cylinder. Comparison of numerical and analytic
results for the rigid and empty elastic cases shows
excellent agreement.

ADMINISTRATIVE INFORMATION
The work presented in this report was conducted with funding from Naval Sea
Systems Command (0O3R11l) under Task Area SF43400391, Task 23556, Work Unit 1940-020
and from Naval Sea Systems Command (05H) under Task Area SR0140301, Task 15321, and
Work Unit 1808-010.

INTRODUCTION
It is well known that equations which govern the dynamics of various phenomena
can in certain instances be brought into identical form with one another to yield an
analogy. In the simplest cases, development of the analogy requires merely the
identification of correspondences between variables and parameters of the particular
equations. A textbook examplel* of such an analogy is that which exists between

the equation of motion for a mass-spring-damper system, Figure la

g ¥ +cy + ky = F cos wt ¢B)

*A complete listing of references is given on page 51.
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and the equation for current flow in a series-electrical circuit, Figure 1b,

LI+RI+21=-E sinot (2)
C o
RESISTANCE R CAPACITANCE C
SPRING k& ‘
IMPRESSED
DISTURBING VOLTAGE l)
WEIGHT w t FORCE F o
DASHPOT ¢ INDUCTANCE L
COORDINATE—DISF;LACEMENT, Yy, COORDINATE—-CURRENT, 1,
OF WEIGHT w FLOWING IN LOOP
Figure la -~ Mass-~Spring-Damper System Figure 1b - Series-Electrical Circuit

Figure 1 - One-Degree-of-Freedom Mechanical and Electrical Systems

These equations can easily be brought into .dentical form through the following

correspondence of parameters:

0 g
-
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=
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Somewhat more complex analogies are also well known among the partial differen-
tial equations which govern various field phenomena. The word "complex" indicates
that considerably more effort is required to obtain the identity of form required
for the analogies than was required for the simple systems just illustrated. 1In a
recent paper,2 G.C. Everstine has given details of the development of such analogies

between the equations of elasticity and the common equations of classical

i,




mathematical physics such as the wave equation, Helmholtz's equation, Laplace's

equation, Poisson's equation, the heat equation, telegraph equation, etc. Various
of these analogies have been used with NASTRAN, a standard general-purpose structural
analysis computer code, in such applications as generating fully coupled added mass
matrices, natural frequencies of general fluid-structure systems, steady-state forced
response of fluid-structure systems, shock response of general fluid-structure
systems, free-surface potential flow problems, and torsion of prismatic bars of
arbitrary cross section. References for these applications are given in Everstine's
paper.2

The work reported here is an extension of these applications of analogies to
steady-state scattering of plane waves from two-dimensional cylindrical shells sub-
merged in an infinite fluid. The particular analogy of interest is one which can be
drawn between the wave equation and the equations of classical linear elasticity
which NASTRAN solves. Two distinct versions of the analogy can be obtained: (1) a
displacement formulation, and (2) a pressure formulation. The latter formulation was
chosen for the present work to take advantage of a comparative reduction by a factor
of two in the number of degrees-of-freedom required in the finite-element model of
the fluid. This report demonstrates the particular form this analogy takes when
applied to steady-state scattering and outlines the details of its implementation

for computing scattered pressures from infinite cylinders.

SCATTERING FROM A RIGID CYLINDER

VELOCITY POTENTIAL FORMULATION

The first set of calculations using the structural analog was made for scattered
pressure from a rigid infinite cylinder ensonified by a steady-state plane wave
front, The physical problem is depicted in Figure 2, which is after a drawing in
the text by Junger and Feit,3

The analog to be used is based on a velocity potential description of the
acoustic field, and the mathematical formulation of the physical problem is shown
in Figure 3. The radiation condition at infinity is the familiar one for scattering

as well as for radiation: there can only be outward traveling waves.

STRUCTURAL ANALOG FORMULATION
This field problem is described via the analog with elasticity. In the detailed

development for the case of two-dimensional elasticit:y,2 the analog prescribes that

B s~




INCIDENT WAVEFRONT

Figure 2 - Rigid Shell Scattering an Incident Plane Wave
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the field be modeled with two-dimensional plane stress finite elements with speci-
ally selected mass and elastic properties. These properties are chosen to bring
about the necessary identity of form between the equations of elasticity which the
structural analysis program solves and the scalar wave equation which governs the
scattered field. Either the x- or y-component of displacement may be chosen to
correspond to the variable ¢ of the wave equation. Here, it is chosen to be the

x~component, giving the correspondence,

Ux-<~—a- ¢ (3)

This states that UX is the structural analog of the scalar potential ¢.

The correspondence betweer UX and ¢ in turn provides the basis for implementing
a structural analog of the surface boundary condition as shown in Figure 3. If ¢
can be replaced with Ux’ then it is to be expected that the outward normal derivative
3¢/3n from the fluid can be replaced by BUX/Bn which has been shown2 to equal the

surface traction divided by the element shear modulus,

53U T}((")
(4)

For a structural surface modeled by finite elements, this expression can be repre-

sented2 by

X X
N = T (5)
an ueA

where Fx is the x-component of the force applied at a grid point on the surface to
which area A has been assigned. Comparison of Equation (5) with the surface normal

boundary condition (Figure 3) shows that the desired condition is met by setting

Fx
=-V (6)

ueA n




from which Fx = -ueA Vn is the required load applied at the particular grid point,
Vn being the normal velocity outward from the structural surface.

The final part of the analog formulation concerns representation of the
radiation condition (Figure 3). One method of treating boundary conditions on an
ideally infinite boundary is to represent approximately these conditions on an
artifical boundary placed a finite distance frcm the scattering (or radiating) sur-
face of the structure.

A basis for the analog formulation used here is a boundary condition applied

’

by Zienkiewicz and Newtona to the artificial bounding surface in radiation

problems,

(N

4Ly
u
[
ol
=11

in which p and t denote acoustic pressure and time, respectively. This expression
is strictly valid only for plane wave54 and hence may be applied at distances from
the structural surface at which the outgoing radiating or scattering wave may be

reasonably plane, at least in a certain local sense, The relation between acoustic

pressure and velocity potential is
L
P=07 (8)
where v 1s the fluid demsity. For time-harmonic ¢ this relation yields
p=- iwp ¢ (9)

which for present purposes may be written

ad (10)

ael
1]

with a constant for a given frequency.

Substituting Equation (10) into Equ.tion (7) then gives

o 3.'?_ S (11)




or, since a # 0,

O]

According to the analogy of Equation (3), Equation (12) in turn gives

BUX 1 BUx
on T c ot a
Substituting Equation (5) into Equation (13) results in
F au
X 1 " x
WA ¢t (14)
e
or
u A 30U
e x
P ™~ ¢ 3¢ (15

Equation (15) indicates that the analog representation of the condition to be obtain-
ed at the assumed finite outer boundary of the exterior fluid (Equation (7)) is
achieved through use of scalar dashpots of constant ueA/c connected from the boundary
to ground, in agreement with the general form for boundary conditions derived by
Everstine.2 In particular, for the outer boundary modeled by finite elements, a
dashpot with the prescribed constant will be attached at each grid point to which

area A has been assigned.

IMPLEMENTING THE ANALOG FOR COMPUTING
With the basic ingredients of the structural analog described, there remains
only to make a computation using it. The problem selected for solution is to find ]

the scattered pressure generated on the surface of an infinite rigid cylinder of

radius a = 0.5 meter by a plane wave propagating in the negative x-direction

— e 4
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(Figure 3) and having a maximum fluid particle velocity 93¢ _/dx = Vx = - 1 in that
direction. The infinite cylinder was chosen because analytically derived solutions
are available for this case.3

Because of the shell's rigidity, only the exterior field need be modeled with
finite elements. The presence of the shell is implicit in the shape of the interior
fluid boundary and the inner boundary condition generated by this shape.

Consider now the details of setting up the finite-element model. As stated
previously (page 3), the analogy specifies that the fluid surrounding the structure
be modeled with two-dimensional plane stress elements having specially assigned
material properties. The NASTRAN computer program was selected as the solver for the
finite-element formulation, and the elements used to model the fluid are the CQDMEM
elements. Since the structure-fluid interface is circular, it is convenient to use

a polar configuration of elements to model the fluid (Figure 4). Symmetry permits

Figure 4 - Finite-Element Model of External Fluid

modeling only the upper half-plane. A perspective view of a typical field element
is shown in Figure 5. The values for Young's modulus Ee’ density Pas and Poisson's

2
ratio v, are computed from the expressions for material constants




E, ~ 1075
0g = Vc? = 1/(150012
e = 1

vy =5x107° 1

THICKNESS
=1 m

Wiy

s s ~ s
L e

R 1

Figure 5 - Typical Membrane Element Used to Model Fluid

E, = 8 He

<
]

1/28 -1 (16)

1
Pa = Mg cz (c = sound speed in fluid)

required to bring about the analogy for the two-dimensional case. 1In particular, the
3; shear modulus He is taken as unity, and B is chosen small compared to unity bgt not

' so small that 148 is numerically indistinguishable from unity (e.g., 8=10—5). An

i arbitrary thickness of unity is assigned to the membrane element. The subscript "e"
signifies that these constants are artificial constants belonging to the elements
which model the fluid.

Figure 6 depicts the inner fluid boundary in perspective to illustrate the
discretization of the boundary surface and the application of the inner boundary
condition. The angle a is determined by the spacing of elements around the cir-

- cumference. Shaded areas of the two faces indicate the area A = 1/2 Area1 + 1/2

Area, assigned to the central grid point. Fx at each grid point has the value

2
indicated by Equation (6) with My = 1, A is the area assigned to the grid point as

shown, and Vn the component of scattered velocity in the outward (into the fluid)
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Figure 6 ~ Discretized Inner Fluid Boundary

direction normal to the structural surface, vy (Figure 3) is easily determined by a
simple cosine projection of the incident velocity vector Vs which is assumed to be
unity, onto the outward unit normal to the surface. For ease of specifying the
inner boundary load, NASTRAN's facility for handling frequency dependent loads is

used in the generalized form

i[¢(f)+6—2nfr]}

{p(f)} = {AB(f)e a7

where f = frequency
S

T

phase angle

time delay
Figure 7 shows that the delay between the times at which a plane wave traveling in
the negative x-direction intersects P. and P, equals the time to travel the distance

1 2
d at speed c, so that T = a(l-cos 0)/c. If the incident wave is represented by

vix,t) = V(x)eim(t_T) (V(x) is magnitude) (18)

10
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vix,t)

bitthbttts

Figure 7 - Diagram for Computing Time Delay

then

vn(x,t) = V(x) cos B e_in eiwt
or, suppressing the time dependence,
v_(x) = V(x) cos § o1t
steady-state
from which the applied force is
F, = - A vn(x) = - A V(x) cos 9 e 1wt
For V(x) = 1
F = - Acos @ e~ 19T (A = area)

11

(19)

(20)

(21)

(22)




The last expression is nicely obtained from the generalized form (Equation (17)) by
taking B(f) =

1, with ¢(f) = 0 and 8 = 0, and the constant term equal to -A cos 6.

Figure 8 illustrates the discretization of the outer boundary (artificial) and

application of the wave absorbing condition with dashpots. The dashpot constant at
each grid point is the area assigned to the grid point, A = 1/2 Areal +1/2 Areaz,
divided by the sound speed c. NASTRAN's CDAMP2 cards are used to specify the

constants.
Y
X
OUTER BOUNDING SURFACE
OF FLUID
C= Al
1/2 AREA1
\\ AREA,

-
—
P
—
-

I’/’
: | /, ”/
] = 7/ { ”/
] vy : UNIT Pt
|/ | } THICKNESS _ -~

_____ - 7 -

---- > ! -
\ / T~ | -
! / Te—~a J’/’

/ ==

‘. / g
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Figure 8 - Discretized Outer Fluid Boundary




As previously noted (page 6) the effectiveness of a plane-wave-absorbing

boundary depends on its distance from the radiating (or scattering) surface. The
present work uses the guideline for placing exterior boundaries reported by A.J.
Kalinowski.4 According to this guideline, a plane wave absorbing boundary placed
1.5 wavelengths from the structural surface will absorb 99.7 percent of outgoing
waves, and a boundary placed one wavelength away will absorb 99.2 percent. This
guideline for two-dimensional applications is based on consideration of the distance
at which cylindrical waves spreading outward from an infinite line source may be
assumed to be nearly plane waves.4

Another guideline4 considered in establishing the fluid model relates to
selection of element dimensions. With CQDMEM elements, the guideline recommends a
minimum length in the radial direction (Figure 4) of at least one-sixth wavelength.

For the first calculations of both rigid and elastic scattering, it was
convenient to use the automatic finite element modeling program GPRIME6 to generate
the CQDMEM meshes such as those shown in Figure 4. The particular submodule of
GPRIME involved is GGEN, which provides two~dimensional capabilities. To this
automatically generated portion of NASTRAN's BULK DATA were added constraint condi-

tions, inner and outer boundary condition data, and the incident wave frequency. In

accord with the analogy, all degrees of freedom except displacement in the x-direction

were constrained at every grid point in the fluid. With these data, NASTRAN sets up

and solves the matrix equation
[Q) (U} + [c] {0} + [u) (U} = (£} (23)

where [Q] is the inertia matrix for the fluid

[C] is the symmetric damping matrix for the fluid which
arises from the radiation condition on the
artificial outer boundary

[H] is the "stiffness'" matrix for the fluid
From the correspondence between displacement and potential (Equation (3)) and the
relation of acoustic pressure to potential (Equation (8)), the fluid pressure so-
lution can be recovered from the "displacement" or "velocity" computed by NASTRAN.

If displacement is selected, as was done here, pressure is obtained by

p=-1iwp U (24)

13
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Normalizing by pcVo, where Vo is an arbitrary reference velocity,

gives Pe-ikU (25)

CALCULATIONS OF RIGID SCATTERING

Modeling of the fluid region for the rigid-body calculations proceeded by first
locating the boundary for the exterior fluid and then, based on the boundary location
criterion (page 13) estimating the frequencies of scattering that might reasonably
be handled with this boundary. The distance between shell surface and outer boundary
was chosen to be ~10 m (actually 10.0889 m). The criterion suggests that a boundary
at this distance will be a good absorber if the distance is 1 or 1.5 wavelengths of
the scattered pressure. Since the wavelength A = 2m/k, where k = w/c, the boundary
distance was expected to be adequate for trequencies of 150 and 225 Hz, depending on
whether it represented .1 or 1.5 A.

A finite element mesh was generated for the region between shell and outer field
boundary consisting of 19 circumferential bands of 18 CQDMEM elements each. A
picture of this mesh obtained through use of the STAGING program7 is shown in Figure
9. A 150-Hz scattering calculation was run with this mesh and the calculated surface
pressures are seen in Figure 10 to be in excellent agreement with results from an
analytic formula3 which was implemented for automatic calculation in a special
purpose program SCAT1.

To obtain results at 225 Hz comparable to those at 150 Hz, it was necessary to
increase the density of the finite element mesh. This was accomplished by sub-
dividing circumferential bands of elements beginning at the fourteenth band out from
the shell surface and extending to the outer boundary (Figure 11). Calculated

pressures are shown in Figure 12.

SCATTERING FROM AN EMPTY ELASTIC CYLINDER

STRUCTURAL ANALOG FOR FLUID-STRUCTURE INTER-
ACTION (SYMMETRIC POTENTIAL FORMULATION)

The analogy used for scattering calculations when the cylindrical shell is
allowed to deform is based on a finite element formulation5 for coupled fluid-
structure interaction in which pressure is the single unknown at grid points in the

fluid,

14
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TOTAL ELEMENTS = 450

Rigid Scattering Calculation

Mesh for 225 Hertz

Figure 11 - Finite-Element




Suras3ieds pidry z3IIdH GZZ 103 19pUTTA) ® JO @JEFING dY3l UO SIINSSald peieInoTed - 21 2an81Jd

-~

[
i
t
Bap 0 L 85p 081
\
]
[}
(\ S'L~) W 6885°0L = AHVANNOS ainid 431n0
w /999 = Y
PZLLVO = oy
w §'0 = SNIAVYH HIANITAD
o oA od
L= A’ :@31107d SIAHND
_vo.sﬂoonn__
NVHLISVYN —~——==
gINLATVNY
6ap 06

18




RIWE. 3 ey

M offvu 8 oll¥ kK aflv £
+ + = (26)
AT o llp o cifp o uf{lp £,

where U 1is the vector of displacement components in the structure
is the vector of pressures at fluid grid points

is the structural mass matrix

g
P
M
K is the structural stiffness matrix
§ is the symmetric damping matrix for the structure
p is the fluid mass density

A

is the area matrix which converts fluid pressures at fluid-
structure interface grid points to structural loads, and

g, g, and 9 are as previously defined (page 13)
The right-hand side represents the vectors g and 52 of known forces acting on the
structure and fluid, respectively. It is seen that, without the coupling term —oéT,
the matrix equation for p has exactly the form given on page 13 for the velocity
potential, reflecting the fact that both pressure and velocity potential satisfy the
wave equation for the field.

Although Equation (26) is amenable to solution by a general structural analysis
computer program such as NASTRAN, the present investigation uses a reformulation8 of
the problem which yields a symmetric matrix system. The symmetrization process
proceeds as follows: dividing the second partition of Equation (26) by -1/p and

integrating the resulting equations in time yields

g - .\
M ollu B 0 U K Al lu [o o|fo
+ + b t
0 Ol}}jo AT -Q/0l | p 9 -C/p P 0 -5/0 J{ P dt
J b
- N
£,
= (27)
T
1
-5 Jf fpdt
\. 0 J
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Introducing a new unknown vector

L0
]
o]
\N'?
T
[=%
(84
~~
N
(o2}
~

4 from which

X

4 qg=p (29)
;} and

: i=p (30)
;
f; and substituting into Equation (27) gives the following system of equations which,
ff in the litetature,8 is referred to as the "symmetric potential formulation,"
!
M ol{v B AlfU K ol{v £
+ + = (31)
& . T .

: 0 -/efld A -Clej |4 0 -Weffg .
#

. where

t
1
B2 =70 ffz de
o

The terminology ''symmetric potential formulation" arises from the fact that g
(Equation (29)) differs from the velocity potential ¢ (Equation (8)) by only the
constant multiplier p.

Consideration is next given to the form that Equation (31) takes for elastic
scattering. To derive this form it is convenient to begin with the expression3 for

the total pressure scattered from an elastic body ensonified by an incident plane

wave of pressure Py>

20
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pt = pi + pse (32)

where Pee is pressure scattered by an elastic boundary. Pee is then represented3 as

the sum

= Peoo +p (33)

where P is pressure scattered by the rigid surface and P, is the pressure radiated
from elastic motion of the shell. Then by substitution of Equation (33) into
Equation (32),

P =Py + Pt Py (34)

Since Equation (34) is the pressure at the interface between structure and fluid,

the resultant forces against the shell surface at grid points of a finite element

model are
Fp=-ap; - (eutp) A=-Ap - Ap (35

where A is the matrix of areas associated with grid points.

The force acting on the inner fluid boundary is obtained from the boundary condition

3p . _
A p U (36)

where Un is the normal component of shell displacement.

Substituting Equation (34) for total pressure gives

ap ap ap ap .-
t_ 1 s©®  _r _ _
an m ton T P Un (3D

from which

21




r - i
X _ _ - = 8
on on P Un n (38)
or
op - ap
se _ i
Bn - TP U, 3n (39)
Substituting
5 (40)
on o Vi
n

where vy denotes the normal component of the incident wave's particle velocity,
n

into Equation (39) gives
Sn = - U v, ) (41)

In the analogy (pages 5-6), enforcement of a normal derivative condition on the
scalar field variable at the structural surface is accomplished by application of a
particular "load" against the inner surface boundary of the fluid. The condition

described by Equation (41) is then obtained by imposing the load
F, =, l}o(gn-yin) = A o(gn—gin) (42)

at grid points of the finite element model, with A a matrix of areas (of the fluid

inner boundary surface) associated with the grid points, and v, the normal component

i
n

of particle velocity in the incident wave. Performing the integration of Fz required

by the symmetry formulation yields

fgzdt=-A&+Av (43)
[o]
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i
;‘ and substituting Pee = ase in Equation (35) yields
: _ e ,
- Fl=-Apg - 83 (44)

1 The unknown components - A ﬁn and - A ase in the fluid and shell loadings are moved

B to the left side of Equation (31) giving, respectively, the upper right and lower
left partitions of the second, or damping, matrix. With the replacement of Py by

ii’ -pevy (from the relationship between pressure and velocity in a plane wave propa-
x

gating in the negative x-direction) the known components of G, and F, become the

; right-hand side of Equation (31)

fi=-Ap, =ocAv, (45)

?f_' 8y = Av, =A v, cos e (46)
thus completing the symmetric formulation for plane wave scattering.

IMPLEMENTING THE SYMMETRIC POTENTIAL FORMULATION
N Performing elastic scattering calculations with the formulation just described
requires the following steps:
a. Construction of finite element models of the cylinder and its applied
loads, and of the fluid with its applied loads and outer boundary conditions, and
b. Connection of the two models at their interface.

The details of these steps are outlined in this section.

A. Finite Element Models of Cylinder and Fluid

As a basis for discretizing the cylinder, a set of grid points is established
around the upper half-plane circumference and these points are connected in pairs by
bar elements (NASTRAN CBAR cards), Figure 13. Since only an arbitrary "slice'" of
the infinite cylinder is being modeled, the bar elements are assigned an arbitrary
depth of 1 m. Since the cylinder is a real structure as opposed to the analog
structure which represents the fluid, the cylinder's elements have the actual

¥ properties of its material. For this work, it was assumed that the cylinder is

23
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Figure 13 - Finite-Element Model of Structure-Fluid Interface
for Submerged Empty Cylinder

steel, that it is 0.0l m thick (which makes it a "thin" shell), and that it has the

following material properties:9
. 3
density p_ = 7700 kg/m
' 10 2
Young's modulus E = 19.5 x 107 newtons/m (47)

Poisson's ratio vs = 0.28

For use in the calculations these properties must in turn be converted to their

corresponding effective values for plane strain,

E

S lane stres
E = —2P 5= 2.116 x 10

splane strain l—vi
“plane stress

11

(48)

\Y
plane stress = .38889

AV =
1-v
Splane strain plane stress

24
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These values of ES and vs’ along with thickness and Pgs are the data supplied on the
property card for the CBAR elements.

The fluid finite element ﬁodel is, as for rigid scattering, an assemblage of
membrane elements such as the one shown in Figure 5. However, the material property
constants for the elements must be altered to account for the division by -p required
for the symmetric formulation (Equation (31)). Thus, the following constants, given

in Figure 5 are transformed to

-5
g = 10"
e P
.. .1
0o = -~ (49)
pc
. 1
Ho 5

where p is the actual density of seawater and has the value9 1026 kg/m3. The dash-

pot constants (partition C in Equation (31)) on the outer boundary are also affected
by the transformation, and their previous values of A/c (page 12) are replaced by
-A/pc.

Equation (45) gives the load acting against the cylinder surface as simply

-pcA, when v, =- 1. Comparing Equation (46) with Equation (6) shows that the load
X

acting against the fluid surface is the same as that prescribed for rigid scattering.

B. Interface Connection of Cylinder and Fluid Models

Although the cylinder grid points and fluid inner boundary grid points are
shown in Figure 13 to be spatially separated, they are actually coincident grid
points in the model. The two sets do not have the same numbers. It is convenient
for subsequent grid point resequencing by BANDITlO to tie such coincident points
together with zero-stiffness springs so that BANDIT, which does not read the DMIG
cards used, will see the structure and fluid models as connected. The actual
coupling of the two models is accomplished by setting up the A and QT partitions of

the second matrix in Equation (31). The assignment of area to grid points has
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already been shown in Figure 6 for the inner fluid boundary. The same manner of
assignment is used for the cylindrical surface model which exactly matches that for
the fluid, with the result that each of a pair of coincident grid points is assigned
the same size area. Equations (43) and (44) _how that the area associated with the
structural grid point of a coincident pair multiplies only the normal component of
the point's motion, whereas the area associated with the {luid point of the pair
multiplies the single scalar degree of freedom associated with the fluid point.

NASTRAN's DMIG cards are used to specify, in terms of grid point numbers and
component numbers, the locations (i,j) for inserting corresponding areas directly
into the damping matrix.

To run the symmetric formulation, a special option, SYSTEM (77) = - 1, must be
specified on the NASTRAN card. This option, which is available only with the
Center's version of NASTRAN, allows the use of negative values for Ee and ue

(Equation (49)).

CALCULATIONS OF ELASTIC SCATTERING

The fluid mesh (Figure 11) for the 225-Hz rigid scattering run was used as a
basis for the first elastic scattering calculation at the same frequency. The
material properties of the membrane elements and dashpot constants on the outer
boundary were divided by ~ p, and the inner boundary grid points were used to define
the modeling of the cylinder; i.e., the surface between 0 and 180 deg was subdivided
into grid points 10 deg apart which were then connected by 18 bar elements.

Velocity output was requested from the NASTRAN run, since it is this quantity
at fluid grid points that is analogous to pressure, as indicated in Equation (29).
Computed pressures at the cylinder surface are compared (Figure 14) with results ob-
tained from an analytic formulation3 coded by the author in a special purpose program
SCAT2. In the range 0 to 90 deg the numerical result differs from the analytic by
essentially a constant, about 6 percent. The results obtained with this fluid mesh
for rigid scattering (Figure 12) strongly indicate that for some reason the¢ mesh
may not perform equally well for rigid and elastic scattering., This possibility was
confirmed by increasing the radial density of elements in the fluid mesh (Figure 15)
and recalculating. The results (Figure 16) deviate from the analytic curve by about

3 percent.
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Although reasonably good results were obtained thus far, the results were for
frequencies far below the intended range of interest, 1 to 20 kc. It was, therefore,
essential for the ultimate usefulness of the metliod to gain some insight into its
performance at the higher frequencies.

Before the results obtained at higher frequencies are summarized, a description
is offered of the modeling strategy and some software developed to assist in
generating the fluid-structure models for these frequencies.

When the structure is modeled, it is very helpful to have some idea of its
natural frequencies and modes, since the modeling of the structural surface should
be sufficient to resolve modes that dominate its response. Although this information
is not generally known for submerged bodies of arbitrary shape, it is known approxi-
mately for infinite hollow thin cylinders. The particular formulation used here is
from Feit and Junger3 {Equation (10.31), page 272] and provides, for any mode number
n > 0, an estimate of the submerged natural frequency. The mode designator n counts
the number of full sine waves (radial or transverse motion) around the circumference
of the cylinder. 1If it is assumed that eight grid points per full sine wave are
adequate to reproduce the wave, an initial estimate of n/2 x 8 (n even) or (n/2 + 1)
x 8 (n odd) equally spaced grid points is obtained for the cylinder model at the
corresponding natural frequency.

As previously noted (page 13) for the earlier calculations at low frequencies,
the facilities of GPRIME6 were used to generate automatically the fluid mesh to
which were added manually the structural model, interface loadings, and fluid outer
boundary condition. The updating was necessary because loading, damping, and "DMIG"
data are not generated by GPRIME. At low frequencies the updating was no real
problem, since relatively few (< 20) elements were needed to represent the boundary
surfaczs. In the higher frequency ranges, however, elements at the interface
boundaries can easily number in the hundred,, making manual updating tedious.
Therefore, a special purpose generator GEN was developed which produces, except for
a few cards, the entire bulk data deck required for the NASTRAN run. The generator
also provides for modeling transition zones in the fluid mesh, which facilitates

reduction of elements in the circumferential direction between the structural and
fluid models.

Figures 17-25 summarize the final results from three sets of calculations in the

frequency range of interest. The results shown in each case except the last are
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those obtained from several refinements of an initial fluid-structure mesh, three
in the first case, two in the second, and one in the last.
Although generally very good convergence to analytic results was obtained for
2100 Hz and 4100 Hz, the numerical solution at 6600 Hz shows less tendency toward
overall agreement. The region of most significant disagreement is specifically
E: E confined to the un-illumined surface. Relative error incurred in the surface
: pressures in this region ranged to 14.2 percent. Several factors may have con-
tributed to this deterioration in accuracy. One possible factor is the closeness of

the wave absorbing boundary to the cylindrical surface, 0.34 m in this case.

.‘-.;..A .
. . c.

According to Kalinowski,a plane wave absorption cannot be used when the largest

‘v o,

dimension of the absorbing boundary is only slightly larger than the corresponding
dimension of the body enclosed. Although the diameter of the absorbing boundary
(1.6 m) would seem to be more than slightly larger than the cylinder diameter (1 m),
the solution may still be subject, because of the closeness, to efrects of reflected
residuals of the outgoing waves that are not absorbed. Another possible factor is

= the way the finite-element mesh for the cylinder was set up. For the 6600-Hz run,

the initial subdivisioning of the cylinder was not done according to the strategy
outlined on page 30. The intent of this run was, rather, to determine whether an i
adequate mesh at the higher frequency could be obtained by first ''squashing" inward

: the initial mesh for 4100 Hz until the outer boundary was 1.5 wavelengths of the j

. higher frequency, and then, using the squashed-down initial mesh, refining to the
total number of fluid elements which gave the 4100-Hz results (Figure 22). Thus,
the shell model at 6600 Hz had the same number of elements (128) as it did at 4100

- Hz, The original modeling strategy, on the other hand, would have suggested that it

have (40/2 x 8) = 160 elements as the beginning base. The rather sharp increase in
complexity of the normal surface velocity profile in the region 90-270 deg (Figures
21 and 24) indicates that at 6600 Hz the shell was somewhat undermodeled.

SCATTERING FROM SUBMERGED CONCENTRIC AND ECCENTRIC CYLINDER
. SYSTEMS WITH CONTAINED FLUID

Figure 26 sketches the physical problem being considered. When the analog
formulation 1s extended to this type of application, it is useful to summarize the
physics3 involved. With fluid inside the outer cylinder, flexing of the cylinder

wall in response to the excitation wave initiates pressure waves which propagate




PLANE WAVE
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Figure 26 - Submerged Concentric Cylinders with Contained Fluid
Ensonified by Plane Wave

inward until they encounter the inner cylinder wall, which in turn sends scattered
waves back. In other words, flexing of the outer and inner cylinders results in two
pressure wave trains in the enclosed fluid, one travelling inward, the other trav-
elling outward from the center. The two waves combine at any point in the interior

fluid to give the total pressure. In particular this pressure, designated pinterior’

exists at the juncture of cylinder wall and fluid.

The analog formulation for exterior scatterirg is augmented to account for the
presence of inner fluid and inner cylinder by (1) incorporating the equations of
motion of the inner fluid, (2) accounting for the interior fluid pressure against
the cylinder, and (3) including the two boundary conditions on the inner fluid. The
first step is accomplished by modeling the interior fluid with finite elemcnts,

The second step is accomplished by noting that the force of a positive interior

pressure at the cylinder, has the opposite sign from the force of a positive exterior




scattered pressure. Hence the total forces acting at a shell grid pcint are (see

Equation (35))

Fy=-Ap; - Ap .+ APy terior (50)

Since Pinterior is unknown, the third term joins the second in moving to the left-
hand side of an augmented Equation (31), and the right-hand side (Equation (45))
remains as before. Lastly, boundary conditions on the fluid are considered. The

outer boundary condition is

apinterior

on =-e0U (1)

which as before (page 22) is obtained by specifying a force
=~ Ve Ao Hn =- Al (52)

Fs

which, under the transformation required for symmetry, yields

t
1 .
%3"pjf3dt“§9n 53)
e}
In the same manner the force on the inner boundary is
Fnner =~ Anner P ¥n (54)
boundary boundary

where w denotes radial displacement of the inner cylind:r surface (or, equivalently,

the adjacent fluid particles since continuity is assumed) and thus

(55)

& {nner = éinner ¥n
boundary boundary
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For the computations made here, the inner cylinder was assumed to be rigid, so that

8 nner = 0 because total velocity is zero at a rigid surface, making no con-

boundary
tribution to Bq-

' The introduction of interior fluid and structure results in an augmented version

of Equation (31)

oooo o) [2 & ajft
0 g0 oldd 4 | A /o olfg
o o il T o el gy
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i - L [ ¥ B (>6)
0 0 /el y 0

in which subscripts i and e denote interior and exterior, respectively, and éi=
Pinterior"

To implement this formulation, the interface between the cylindrical shell and
adjacent fluids is modeled as shown in Figure 27. The shell interface with the
interior fluid is handled in the same manner as that with the exterior fluid. A new
set of grid points is introduced to represent the interface boundary of the interior
fluid, these points being coincident with the respective shell grid points, and zero-
valued spring connections are used as before to aid the resequencing algorithm (see
page 25). Because of the spatial coincidence of the shell grid points with adjacent
exterior and interior fluid grid points, the surface area (Figure 6) assigned each
structural grid point is also assigned to its neighboring fluid grid points. Area
components of the coupling partitions (AT,A,-AT,-A) of the damping matrix in

Equation (56) are inserted, as before, with "DMIG" cards (see page 26), taking care
that areas associated with the inner fluid coupling are given a negative sign.

Calculations were made for two cases: 1) the interior cylinder concentric with

the outer one, and 2) the interior cylinder offset from the center of the outer one.
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Figure 27 - Finite-Element Model of Cylindrical Shell Interface
with Exterior and Interior Fluids

Since at the time of calculation no analytic or other results were at hand for

checking, efforts were made to build into the model some level of confidence from

results achieved in previous runs. To this end, the exterior fluid and structural

model from the 2100 Hertz calculation (Figure 17) was used again for the outer fluid,
and the interior fluid was modeled with a mesh of somewhat higher density than that

of the outer fluid. The combined total mesh is shown in Figure 28. Figure 29 com-

pares scattered pressures calculated on the surface of the outer cylinder with the
previous results (Figure 19) for the same cylinder when it was empty.
For the second calculation, the interior cylinder was shifted 0.03 m from the

center of the outer circle. Figure 30 shows the mesh for this run and Figure 31

compares the results with the concentric case.
These two calculations suggest one of the major benefits from the method of

structural analogies: the method may permit one to take advantage of the considerable

versatility and variety of application inherent in some of the general purpose

structural analysis programs available for solving finite element formulations,
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SUMMARY

Our experiences in applying a structural analog method to plane-wave 2-D scat-
tering can be summarized as follows:

1. Computations have been made thus for only at frequencies in the lower
portions (2kc to ~7kc) of the range (lkc - 20kc) considered relevant to this project.
2. When both structure and fluid were adequately represented in the finite
element model, computed structural surface pressures were in excellent agreement with

available analytic results.

3. Problem size, which for our applications was governed primarily by the
number of finite elements required to model the fluid, increased significantly as
frequency increased, despite the fact that the fluid outer boundary moved closer to
the structural surface, i.e., less fluid was being modeled.

4, The method, implemented through NASTRAN, is capable of handling applications

involving arbitrary structural shapes and structure-fluid configurations.

PROJECTED FUTURE DEVELOPMENT

It is anticipated that future developmental efforts associated with the struc-
tural analog approach will be directed toward

1. Assessing performance of plane wave absorption at higher frequencies than
have so far been computed.

2. Assessing the merits of a "high frequency" version of the structural analog
formulation in which the exterior fluid is discarded from the model.

3. Developing interfaces between computed output from the finite-element model
(structural surface pressures and velocities) and algorithms which can use these
data to compute pressures at field points outside the finite element model.

4, TIncreasing our store of analytic and/or experimental results for use in

verifying numerical results.
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